Skip to main content

1 4 simples móvel médias


Médias móveis Médias móveis Com conjuntos de dados convencionais, o valor médio é frequentemente o primeiro, e um dos mais úteis, estatísticas de resumo a calcular. Quando os dados estão na forma de uma série temporal, a média da série é uma medida útil, mas não reflete a natureza dinâmica dos dados. Os valores médios calculados em períodos em curto, anteriores ao período atual ou centrados no período atual, são freqüentemente mais úteis. Como esses valores médios variam ou se movem, à medida que o período atual se move a partir do tempo t 2, t 3, etc., eles são conhecidos como médias móveis (Mas). Uma média móvel simples é (tipicamente) a média não ponderada de k valores anteriores. Uma média móvel exponencialmente ponderada é essencialmente a mesma que uma média móvel simples, mas com contribuições para a média ponderada pela sua proximidade com o tempo atual. Como não existe uma, mas toda uma série de médias móveis para qualquer série, o conjunto de Mas pode ser plotado em gráficos, analisado como uma série e usado na modelagem e previsão. Uma gama de modelos pode ser construída usando médias móveis, e estes são conhecidos como modelos MA. Se tais modelos forem combinados com modelos autorregressivos (AR), os modelos compostos resultantes são conhecidos como modelos ARMA ou ARIMA (o I é para integrado). Médias móveis simples Uma vez que uma série temporal pode ser considerada como um conjunto de valores, t 1,2,3,4, n a média destes valores pode ser calculada. Se assumimos que n é bastante grande, e selecionamos um inteiro k que é muito menor que n. Podemos calcular um conjunto de médias de bloco, ou médias móveis simples (de ordem k): Cada medida representa a média dos valores de dados sobre um intervalo de k observações. Observe que a primeira MA possível de ordem k gt0 é aquela para t k. De forma mais geral, podemos descartar o subíndice extra nas expressões acima e escrever: Isto indica que a média estimada no tempo t é a média simples do valor observado no instante t e os intervalos de tempo anteriores k-1. Se forem aplicados pesos que diminuam a contribuição de observações que estão mais distantes no tempo, a média móvel é dita ser suavizada exponencialmente. As médias móveis são frequentemente utilizadas como uma forma de previsão, pelo que o valor estimado para uma série no tempo t 1, S t 1. É tomado como o MA para o período até e incluindo o tempo t. por exemplo. A estimativa de hoje é baseada em uma média de valores anteriores registrados até e inclusive ontem (para dados diários). As médias móveis simples podem ser vistas como uma forma de suavização. No exemplo ilustrado abaixo, o conjunto de dados sobre poluição atmosférica mostrado na introdução deste tópico foi aumentado por uma linha de média móvel de 7 dias, mostrada aqui em vermelho. Como pode ser visto, a linha de MA suaviza os picos e depressões nos dados e pode ser muito útil na identificação de tendências. A fórmula padrão de cálculo de forward significa que os primeiros k -1 pontos de dados não têm nenhum valor de MA, mas depois os cálculos se estendem até o ponto de dados final da série. Uma razão para calcular médias móveis simples da maneira descrita é que ela permite que os valores sejam calculados para todos os intervalos de tempo desde o tempo tk até o presente, e Como uma nova medição é obtida para o tempo t 1, o MA para o tempo t 1 pode ser adicionado ao conjunto já calculado. Isso fornece um procedimento simples para conjuntos de dados dinâmicos. No entanto, existem alguns problemas com esta abordagem. É razoável argumentar que o valor médio nos últimos 3 períodos, digamos, deve ser localizado no tempo t -1, não no tempo t. E para um MA sobre um número par de períodos, talvez ele deve ser localizado no ponto médio entre dois intervalos de tempo. Uma solução para esse problema é usar cálculos centralizados de MA, nos quais o MA no tempo t é a média de um conjunto simétrico de valores em torno de t. Apesar de seus méritos óbvios, esta abordagem não é geralmente usada porque exige que os dados estejam disponíveis para eventos futuros, o que pode não ser o caso. Em casos onde a análise é inteiramente de uma série existente, o uso de Mas centralizado pode ser preferível. As médias móveis simples podem ser consideradas como uma forma de suavização, removendo alguns componentes de alta freqüência de uma série de tempo e destacando (mas não removendo) as tendências de forma semelhante à noção geral de filtragem digital. De fato, as médias móveis são uma forma de filtro linear. É possível aplicar um cálculo da média móvel a uma série que já tenha sido suavizada, isto é, suavizar ou filtrar uma série já suavizada. Por exemplo, com uma média móvel de ordem 2, podemos considerá-la como sendo calculada usando pesos, então a MA em x 2 0,5 x 1 0,5 x 2. Da mesma forma, a MA em x 3 0,5 x 2 0,5 x 3. Se nós Aplicar um segundo nível de suavização ou filtragem, temos 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 ou seja, a filtragem de 2 estádios Processo (ou convolução) produziu uma média móvel simétrica ponderada variável, com pesos. Várias circunvoluções podem produzir médias móveis ponderadas bastante complexas, algumas das quais foram encontradas de uso particular em campos especializados, como nos cálculos de seguros de vida. As médias móveis podem ser usadas para remover efeitos periódicos se computadas com o comprimento da periodicidade como um conhecido. Por exemplo, com os dados mensais as variações sazonais podem frequentemente ser removidas (se este for o objetivo) aplicando uma média móvel simétrica de 12 meses com todos os meses ponderados igualmente, exceto o primeiro eo último que são ponderados por 12. Isto é porque haverá Ser de 13 meses no modelo simétrico (tempo atual, t. - 6 meses). O total é dividido por 12. Procedimentos semelhantes podem ser adotados para qualquer periodicidade bem definida. Médias móveis exponencialmente ponderadas (EWMA) Com a fórmula da média móvel simples: todas as observações são igualmente ponderadas. Se chamássemos esses pesos iguais, alfa t. Cada um dos k pesos seria igual a 1 k. Então a soma dos pesos seria 1, ea fórmula seria: Já vimos que múltiplas aplicações desse processo resultam em pesos variando. Com médias móveis ponderadas exponencialmente, a contribuição para o valor médio das observações que são mais removidas no tempo é deliberada reduzida, enfatizando os eventos mais recentes (locais). Essencialmente um parâmetro de suavização, 0lt alfa lt1, é introduzido, ea fórmula revisada para: Uma versão simétrica desta fórmula seria da forma: Se os pesos no modelo simétrico são selecionados como os termos dos termos da expansão binomial, (1212) 2q. Eles somarão a 1, e quando q se tornar grande, aproximar-se-á da distribuição Normal. Esta é uma forma de ponderação do kernel, com o Binomial agindo como a função do kernel. A convolução de dois estágios descrita na subseção anterior é precisamente esta disposição, com q 1, produzindo os pesos. Em suavização exponencial é necessário usar um conjunto de pesos que somam 1 e que reduzem em tamanho geometricamente. Os pesos usados ​​são tipicamente da forma: Para mostrar que esses pesos somam 1, considere a expansão de 1 como uma série. Podemos escrever e expandir a expressão entre parênteses usando a fórmula binomial (1-x) p. Onde x (1-) e p -1, o que dá: Isso então fornece uma forma de média móvel ponderada da forma: Esta soma pode ser escrita como uma relação de recorrência: o que simplifica muito a computação e evita o problema de que o regime de ponderação Deve ser estritamente infinito para os pesos a somar a 1 (para pequenos valores de alfa, isso normalmente não é o caso). A notação utilizada por diferentes autores varia. Alguns usam a letra S para indicar que a fórmula é essencialmente uma variável suavizada e escrevem: enquanto a literatura da teoria de controle usa freqüentemente Z em vez de S para os valores exponencialmente ponderados ou suavizados (ver, por exemplo, Lucas e Saccucci, 1990, LUC1 , Eo site do NIST para mais detalhes e exemplos trabalhados). As fórmulas citadas acima derivam do trabalho de Roberts (1959, ROB1), mas Hunter (1986, HUN1) usa uma expressão da forma: que pode ser mais apropriada para uso em alguns procedimentos de controle. Com alfa 1, a estimativa média é simplesmente o seu valor medido (ou o valor do item de dados anterior). Com 0,5 a estimativa é a média móvel simples das medições atuais e anteriores. Nos modelos de previsão, o valor, S t. É freqüentemente usado como estimativa ou valor de previsão para o próximo período de tempo, ou seja, como a estimativa para x no tempo t 1. Assim, temos: Isto mostra que o valor da previsão no tempo t 1 é uma combinação da média móvel exponencial ponderada anterior Mais um componente que representa o erro de previsão ponderado, epsilon. No tempo t. Supondo que uma série temporal é dada e uma previsão é necessária, um valor para alfa é necessário. Isto pode ser estimado a partir dos dados existentes, avaliando a soma dos erros de predição quadrados obtidos com valores variáveis ​​de alfa para cada t 2,3. Definindo a primeira estimativa como sendo o primeiro valor de dados observado, x 1. Em aplicações de controle, o valor de alfa é importante na medida em que é usado na determinação dos limites de controle superior e inferior e afeta o comprimento médio de execução (ARL) esperado Antes que esses limites de controle sejam quebrados (sob o pressuposto de que as séries temporais representam um conjunto de variáveis ​​independentes, aleatoriamente distribuídas, com variância comum). Nestas circunstâncias, a variância da estatística de controlo é (Lucas e Saccucci, 1990): Os limites de controlo são usualmente definidos como múltiplos fixos desta variância assintótica, e. - 3 vezes o desvio padrão. Se alfa 0,25, por exemplo, e os dados sendo monitorados forem assumidos como tendo uma distribuição Normal, N (0,1), quando em controle, os limites de controle serão - 1,134 e o processo atingirá um ou outro limite em 500 passos na média. Lucas e Saccucci (1990 LUC1) derivam os ARLs para uma ampla gama de valores alfa e sob várias suposições usando procedimentos de Cadeia de Markov. Eles tabulam os resultados, incluindo o fornecimento de ARLs quando a média do processo de controle foi deslocada por algum múltiplo do desvio padrão. Por exemplo, com um deslocamento 0,5 com alfa 0,25 o ARL é menos de 50 etapas de tempo. As abordagens descritas acima são conhecidas como suavização exponencial única. Uma vez que os procedimentos são aplicados uma vez à série temporal e, em seguida, análises ou processos de controlo são realizados no conjunto de dados suavizado resultante. Se o conjunto de dados incluir uma tendência e / ou componentes sazonais, o alisamento exponencial de dois ou três estágios pode ser aplicado como um meio de remover (explicitamente modelar) esses efeitos (veja a seção sobre Previsão abaixo e o exemplo trabalhado pelo NIST). CHA1 Chatfield C (1975) A Análise da Série de Tempos: Teoria e Prática. Chapman e Hall, Londres HUN1 Hunter J S (1986) A média móvel exponencialmente ponderada. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Esquemas de controlo da média móvel ponderada exponencialmente: propriedades e melhoramentos. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Testes de gráficos de controle baseados em médias móveis geométricas. Na segunda coluna desta tabela, é mostrada uma média móvel de ordem 5, fornecendo uma estimativa do ciclo tendencial. O primeiro valor nesta coluna é a média das cinco primeiras observações (1989-1993) o segundo valor na coluna 5-MA é a média dos valores 1990-1994 e assim por diante. Cada valor na coluna 5-MA é a média das observações no período de cinco anos centrado no ano correspondente. Não há valores para os dois primeiros anos ou últimos dois anos porque não temos duas observações de cada lado. Na fórmula acima, a coluna 5-MA contém os valores de hat com k2. Para ver como é a estimativa do ciclo tendencial, traçamos o gráfico juntamente com os dados originais da Figura 6.7. Parcela 40 elecsales, venda de eletricidade principal quotResidential, ylab quotGWhquot. 41 Observe como a tendência (em vermelho) é mais suave do que os dados originais e captura o movimento principal da série de tempo sem todas as flutuações secundárias. O método da média móvel não permite estimativas de T em que t está próximo das extremidades da série, portanto, a linha vermelha não se estende para os bordos do gráfico em qualquer lado. Posteriormente, usaremos métodos mais sofisticados de estimativa de ciclo tendencial que permitem estimativas próximas aos pontos finais. A ordem da média móvel determina a suavidade da estimativa de tendência-ciclo. Em geral, uma ordem maior significa uma curva mais suave. O gráfico a seguir mostra o efeito da alteração da ordem da média móvel para os dados de vendas de eletricidade residencial. As médias móveis simples como estas são normalmente de ordem ímpar (por exemplo, 3, 5, 7, etc.). Isto é assim que são simétricas: numa média móvel de ordem m2k1, existem k observações anteriores, k observações posteriores e a observação do meio Que são médias. Mas se m fosse uniforme, não seria mais simétrico. Médias móveis de médias móveis É possível aplicar uma média móvel a uma média móvel. Uma razão para fazer isso é fazer uma média móvel de ordem uniforme simétrica. Por exemplo, podemos pegar uma média móvel de ordem 4 e, em seguida, aplicar outra média móvel de ordem 2 aos resultados. Na Tabela 6.2, isso foi feito para os primeiros anos dos dados da produção de cerveja trimestral australiana. Beer2 lt - window 40 ausbeer, início 1992 41 ma4 ltm 40 beer2, ordem 4. center FALSE 41 ma2x4 ltm 40 cerveja2, ordem 4. center TRUE 41 A notação 2times4-MA na última coluna significa um 4-MA Seguido por um 2-MA. Os valores na última coluna são obtidos tomando uma média móvel de ordem 2 dos valores na coluna anterior. Por exemplo, os dois primeiros valores na coluna 4-MA são 451,2 (443410420532) 4 e 448,8 (410420532433) 4. O primeiro valor na coluna 2times4-MA é a média destes dois: 450,0 (451.2448.8) 2. Quando um 2-MA segue uma média móvel de ordem par (como 4), ele é chamado de média móvel centrada de ordem 4. Isso é porque os resultados são agora simétricos. Para ver que este é o caso, podemos escrever o 2times4-MA da seguinte forma: begin hat amp frac Bigfrac (y y y y) frac (y y y y) Big frac fray frac14y frac14y frac14y frac18y. Fim É agora uma média ponderada de observações, mas é simétrica. Outras combinações de médias móveis também são possíveis. Por exemplo, uma 3 x 3 MA é frequentemente utilizada e consiste numa média móvel de ordem 3 seguida por outra média móvel de ordem 3. Em geral, uma ordem par MA deve ser seguida por uma ordem par MA para torná-la simétrica. Similarmente, uma ordem ímpar MA deve ser seguida por uma ordem ímpar MA. Estimativa do ciclo tendencial com dados sazonais O uso mais comum de médias móveis centradas é estimar o ciclo tendencial a partir de dados sazonais. Considere o 2x4-MA: fracasso do chapéu frac14y frac14y frac14y frac18y. Quando aplicados aos dados trimestrais, cada trimestre do ano recebe igual peso, uma vez que o primeiro eo último termo se aplicam ao mesmo trimestre em anos consecutivos. Conseqüentemente, a variação sazonal será média e os valores resultantes de hat t terão pouca ou nenhuma variação sazonal restante. Um efeito semelhante seria obtido utilizando um 2-8 MA ou um 2-12 MA. Em geral, um m-MA 2x é equivalente a uma média móvel ponderada de ordem m1 com todas as observações tomando peso 1m exceto para o primeiro e último termos que tomam pesos 1 (2m). Portanto, se o período sazonal é par e de ordem m, use um m-MA 2x para estimar o ciclo tendencial. Se o período sazonal é ímpar e de ordem m, use um m-MA para estimar o ciclo de tendência. Em particular, um 2 x 12 MA pode ser usado para estimar o ciclo de tendência de dados mensais e um 7-MA pode ser usado para estimar a tendência-ciclo de dados diários. Outras escolhas para a ordem do MA normalmente resultarão em estimativas de ciclo de tendência sendo contaminadas pela sazonalidade nos dados. Exemplo 6.2 Fabricação de equipamentos elétricos A Figura 6.9 mostra um 2 x 12-MA aplicado ao índice de ordens de equipamentos elétricos. Observe que a linha suave não mostra nenhuma sazonalidade, é quase o mesmo que o ciclo de tendências mostrado na Figura 6.2 que foi estimado usando um método muito mais sofisticado do que as médias móveis. Qualquer outra escolha para a ordem da média móvel (exceto para 24, 36, etc.) teria resultado em uma linha suave que mostra algumas flutuações sazonais. Plot 40 elecequip, ylab quotNovas ordens indicequot. Col quotgrayquot, main quotredigtquot, 41 Quotred quotredquot 41 Médias móveis ponderadas As combinações de médias móveis resultam em médias móveis ponderadas. Por exemplo, o 2x4-MA discutido acima é equivalente a um 5-MA ponderado com pesos dados por frac, frac, frac, frac, frac. Em geral, uma m-MA ponderada pode ser escrita como hat t sum k aj y, onde k (m-1) 2 e os pesos são dados por a, dots, ak. É importante que todos os pesos somem a um e que sejam simétricos para que aj a. O m-MA simples é um caso especial onde todos os pesos são iguais a 1m. Uma grande vantagem das médias móveis ponderadas é que elas produzem uma estimativa mais suave do ciclo tendencial. Em vez das observações que entram e que deixam o cálculo no peso cheio, seus pesos são aumentados lentamente e então lentamente diminuídos resultando em uma curva mais lisa. Alguns conjuntos específicos de pesos são amplamente utilizados. Tabela 6.3.1-4 Média Móvel Simples Quando um gráfico de ações mostra médias móveis para diferentes intervalos, o gráfico com o menor intervalo de tempo é conhecido como a média móvel rápida, uma vez que as mudanças nos preços de fechamento ocorrem em um dia - Quando um gráfico de ações mostra médias móveis para dois intervalos diferentes, o gráfico com o maior intervalo de tempo é conhecido como a média lenta como as mudanças no fechamento Os preços ocorrem no dia-a-dia, a média de movimentação rápida refletirá essas mudanças mais rapidamente do que a média lenta

Comments